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Abstract

This paper1 describes SRM (Scalable Reliable Multicast), a
reliable multicast framework for application level framing
and light-weight sessions. The algorithms of this framework
are efficient, robust, and scale well to both very large net-
works and very large sessions. The framework has been
prototyped in wb, a distributed whiteboard application, and
has been extensively tested on a global scale with sessions
ranging from a few to more than 1000 participants. The
paper describes the principles that have guided our design,
including the IP multicast group delivery model, an end-to-
end, receiver-based model of reliability, and the application
level framing protocol model. As with unicast communica-
tions, the performance of a reliable multicast delivery algo-
rithm depends on the underlying topology and operational
environment. We investigate that dependence via analysis
and simulation, and demonstrate an adaptive algorithm that
uses the results of previous loss recovery events to adapt the
control parameters used for future loss recovery. With the
adaptive algorithm, our reliable multicast delivery algorithm
provides good performance over a wide range of underlying
topologies.

�Supported by the Director, Office of Energy Research, Scientific Com-
puting Staff, of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

ySupported in part by the Advanced Research Projects Agency, moni-
tored by Fort Huachuca under contract DABT63-94-C-0073.

1An earlier version of this paper appeared in ACM SIGCOMM 95. This
version corrects errors in the graphs of that earlier version.

1 Introduction

Several researchers have proposed generic reliable multicast
protocols, much as TCP is a generic transport protocol for re-
liable unicast transmission. In this paper we take a different
view: unlike the unicast case where requirements for reliable,
sequenced data delivery are fairly general, different multicast
applications have widely different requirements for reliabil-
ity. For example, some applications require that delivery
obey a total ordering while many others do not. Some ap-
plications have many or all the members sending data while
others have only one data source. Some applications have
replicated data, for example in ann-redundant file store, so
several members are capable of transmitting a data item while
for others all data originates at a single source. These dif-
ferences all affect the design of a reliable multicast proto-
col. Although one could design a protocol for the worst-case
requirements, e.g., guaranteeing totally ordered delivery of
replicated data from a large number of sources, such an ap-
proach results in substantial overhead for applications with
more modest requirements. One cannot make a single re-
liable multicast delivery scheme that simultaneously meets
the functionality, scalability, and efficiency requirements of
all applications.

The weakness of “one size fits all” protocols has long
been recognized. In 1990 Clark and Tennenhouse proposed a
new protocol model called Application Level Framing (ALF)
which explicitly includes an application’s semantics in the
design of that application’s protocol [CT90]. ALF was later
elaborated with a light-weight rendezvous mechanism based
on the IP multicast distribution model, and with a notion
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of receiver-based adaptation for unreliable, real-time appli-
cations such as audio and video conferencing. The result,
known as Light-Weight Sessions (LWS), has been very suc-
cessful in the design of wide-area, large-scale, conferencing
applications. This paper further evolves the principles of
ALF and LWS to add a framework for scalable reliable mul-
ticast (SRM).

ALF says that the best way to meet diverse application
requirements is to leave as much functionality and flexibility
as possible to the application. Therefore our algorithms are
designed to meet only the minimal definition of reliable mul-
ticast, i.e., eventual delivery of all the data to all the group
members, without enforcing any particular delivery order.
We believe that if the need arises, machinery to enforce a
particular delivery order can be easily added on top of this
reliable delivery service.

The design is also heavily based on the group delivery
model that is the centerpiece of the IP multicast protocol
[D91]. In IP multicast, data sources simply send to the
group’s multicast address (a normal IP address chosen from
a reserved range of addresses) without needing any advance
knowledge of the group membership. To receive any data
sent to the group, receivers simply announce that they are in-
terested (via a “join” message multicast on the local subnet)
— no knowledge of the group membership or active senders
is required. Each receiver joins and leaves the group indi-
vidually, without affecting the data transmission to any other
member. Our multicast delivery framework further enhances
the multicast group concept by maximizing information and
data sharing among all the members, and strengthens the in-
dividuality of membership by making each member respon-
sible for its own correct reception of all the data.

Finally, our design attempts to follow the core design prin-
ciples of TCP/IP. First, we require only the basic IP delivery
model — best-effort with possible duplication and reorder-
ing of packets — and build the reliability on an end-to-end
basis. No change or special support is required from the un-
derlying IP network. Second, in a fashion similar to TCP
adaptively setting timers or congestion control windows, our
algorithms dynamically adjust their control parameters based
on the observed performance within a session. This allows
applications using this model to adapt to a wide range of
group sizes, topologies and link bandwidths while maintain-
ing robust and high performance.

The paper proceeds as follows: Section 2 discusses gen-
eral issues for reliable multicast delivery. Section 3 describes
in detail the reliable multicast algorithm embedded in the
wb implementation. Section 4 discusses the performance
of the algorithm in simple topologies such as chains, stars,
and bounded-degree trees, and Section 5 presents simulation
results from more complex topologies. Section 6 examines
the behavior of the loss recovery algorithms as a function of
the timer parameters. Section 7 discusses extensions to the
basic scheme embedded in wb, such as adaptive algorithms

for adjusting the timer parameters and algorithms for local
recovery. Section 8 discusses both the application-specific
aspects of wb’s reliable multicast algorithms as well as the
aspects of the underlying approach that have general applica-
bility. Section 9 discusses related work on reliable multicast.
Section 10 discusses future work on the congestion control
algorithms. Finally, Section 11 presents conclusions.

2 The design of reliable multicast

2.1 Reliable data delivery: adding the word
“multicast”

The problem of reliable unicast data delivery is well under-
stood and a variety of well-tested solutions are available.
However, adding the word “multicast” to the problem state-
ment significantly changes the solution set. For example, in
any reliable protocol some party must take responsibility for
loss detection and recovery. Because of the “fate-sharing”
implicit in unicast communication, i.e., the data transmis-
sion fails if either of the two ends fails, either the sender or
receiver can take on this role. In TCP, the sender times trans-
missions and keeps retransmitting until an acknowledgment
is received. NETBLT [CLZ87] uses the opposite model and
makes the receiver responsible for all loss detection and re-
covery. Both approaches have been shown to work well for
unicast.

However, if a TCP-style, sender-based approach is applied
to multicast distribution, a number of problems occur. First,
because data packets trigger acknowledgments (positive or
negative) from all the receivers, the sender is subject to the
well-known ACK implosion effect. Also, if the sender is
responsible for reliable delivery, it must continuously track
the changing set of active receivers and the reception state
of each. Since the IP multicast model deliberately imposes a
level of indirection between senders and receivers (i.e., data is
sent to the multicast group, not to the set of receivers), the re-
ceiver set may be expensive or impossible to obtain. Finally,
the algorithms that are used to adapt to changing network
conditions tend to lose their meaning in the case of multicast.
E.g., how should the round-trip time estimate for a retransmit
timer be computed when there may be several orders of mag-
nitude difference in propagation time to different receivers?
What is a congestion window if the delay-bandwidth product
to different receivers varies by orders of magnitude? What
self-clocking information exists in the ACK stream(s) if some
receivers share one bottleneck link and some another?

These problems illustrate that single-point, sender-based
control does not adapt or scale well for multicast delivery.
Since members of a multicast group have different commu-
nication paths and may come and go at any time, the “fate-
shared” coupling of sender and receiver in unicast transmis-
sions does not generalize to multicast. Thus it is clear that
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receiver-based reliability is a far better building block for
reliable multicast [PTK94].

Another unicast convention that migrates poorly to mul-
ticast has to do with the vocabulary used by the sender and
receiver(s) to describe the progress of their communication.
A receiver can request a retransmission either in application
data units (“sector 5 of file sigcomm-slides.ps”) or in terms
of the shared communication state (“sequence numbers 2560
to 3071 of this conversation”). Both models have been used
successfully (e.g., NFS uses the former and TCP the latter)
but, because the use of communication state for naming data
allows the protocol to be entirely independent of any applica-
tion’s namespace, it is by far the most popular approach for
unicast applications. However, since multicast transmission
tends to have much weaker and more diverse state synchro-
nization than does unicast, using shared communication state
to name data does not work well in the multicast case.

For example, if a receiver joins a conversation late and
receives sequence numbers 2560 to 3071, it has no idea of
what’s been missed (since the sender’s starting number is
arbitrary) and so can neither do anything useful with the
data nor make an intelligent request for retransmission. If
receivers hear from a sender again after a lengthy network
partition, they have no way of knowing whether “2560” is a
retransmission of data they received before the partition or is
completely new (due to sequence number wrapping during
the partition). Thus the “naming in application data units
(ADUs)” model works far better for multicast.

Use of this model also has two beneficial side effects. As
[CT90] points out, a separate protocol namespace can im-
pose delays and inefficiencies on an application, e.g., TCP
will only deliver data in sequence even though a file trans-
fer application might be perfectly happy to receive sectors in
any order. The ADU model eliminates this delay and puts
the application back in control. Also, since ADU names can
be made independent of the sending host, it is possible to use
the anonymity of IP multicast to exploit the redundancy of
multiple receivers. E.g., if some receiver asks for a retrans-
mit of “sigcomm-slides.ps sector 5”, any member who has a
copy of the data, not just the original sender, can carry out
the retransmission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be ac-
tively involved in their communications and that communi-
cation should be done in terms of ADUs rather than some
generic protocol namespace, we do not claim that every ap-
plication’s protocol must be completely different from every
other’s or that there can be no shared design or code. A great
deal of design commonality is imposed simply because dif-
ferent applications are attempting to solve the same problem:
scalable, reliable, multipoint communication over the Inter-
net. As Section 2.1 pointed out, just going from unicast to

multicast greatly limits the viable protocol design choices. In
addition, experience with the Internet has shown that success-
ful protocols must accommodate many orders of magnitude
variation in every possible dimension. While several algo-
rithms meet the constraints of Section 2.1, very few of them
continue to work if the delay, bandwidth and user population
are all varied by factors of 1000 or more.

In the end we believe the ALF model results in a skeleton
or template which is then filled in with application specific
details. Portions of that skeleton are completely determined
by network dynamics and scaling considerations and apply
to any application. So, for example, the scalable request and
repair algorithms described in Sections 3 through 7 are com-
pletely generic and apply to a wide variety of reliable mul-
ticast applications. Each different application supplies this
reliability framework with a namespace to talk about what
data has been sent and received; a policy and machinery to
determine how bandwidth should be apportioned between a
participant in the group, the group as a whole, and other users
of the net; and a local send policy that a participant uses to
arbitrate the different demands on its bandwidth (e.g., locally
originated data, repair requests and responses, etc.). It is the
intent of this paper to describe the skeleton common to scal-
able, reliable multicast applications. However, to make the
ideas concrete, we first describe a complete, widely used ap-
plication — wb, the LBNL network whiteboard — that has
been implemented according to this model. After mention-
ing some details of its operation that are direct implications
of the design considerations in Section 2.1, we then factor
out the wb specifics to expose the generic, scalable, reliable
multicast skeleton underneath. The remaining sections of
this paper are an exploration of that skeleton.

2.3 The wb framework

Wb is a network conferencing tool designed and imple-
mented by McCanne and Jacobson [J92, J94a, M92] that
provides a distributed whiteboard. The whiteboard separates
the drawing into pages, where a new page can correspond to
a new viewgraph in a talk or the clearing of the screen by a
member of a meeting. Any member can create a page and any
member can draw on any page.2 Each member is identified
by a globally unique identifier, the Source-ID, and each page
is identified by the Source-ID of the initiator of the page and
a page number locally unique to that initiator. Each mem-
ber drawing on the whiteboard produces a stream of drawing

2There are floor control mechanisms, largely external to wb, that can be
used if necessary to control who can create or draw on pages. These can be
combined with normal Internet privacy mechanisms (e.g., symmetric-key
encryption of all the wb data) to limit participation to a particular group
and/or with normal authentication mechanisms (e.g., participants signing
their drawing operations via public-key encryption of a cryptographic hash
over the data). The privacy, authentication and control mechanisms are
completely orthogonal to the reliability machinery that is the subject of this
paper and will not be described here. For further details see [MJ95, J94].
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operations, or “drawops”, that are timestamped and assigned
sequence numbers, relative to the sender. Most drawing op-
erations are idempotent and are rendered immediately upon
receipt. Each member’s graphics stream is independent from
that of other sites.

The following assumptions are made in wb’s reliable mul-
ticast design:

� All data has a unique, persistent name.

This global name consists of the end host’s Source-ID
and a locally-unique sequence number.

� The name always refers to the same data.

It is impossible to achieve consistency among different
receivers in the face of late arrivals and network parti-
tions if, say, drawop “floyd:5” initially means a blue line
and later turns into a red circle. This does not mean that
the drawing can’t change, only that drawops must effect
the change. E.g., to change a blue line to a red circle, a
“delete” drawop for “floyd:5” is sent, then a drawop for
the circle is sent.

� Source-ID’s are persistent.

A user will often quit a session and later re-join, obtain-
ing the session’s history from the network. By ensuring
that Source-ID’s are persistent across invocations of the
application, the user maintains ownership of any data
created before quitting.

� IP multicast datagram delivery is available.

� All participants join the same multicast group; there is
no distinction between senders and receivers.

Wb has no requirement for ordered delivery because most
operations are idempotent. Operations that are not strictly
idempotent, such as a “delete” that references an earlier dra-
wop, can be patched after the fact, when the missing data
arrives. A receiver uses the timestamps on the drawing op-
erations to determine the rendering order. This coarse syn-
chronization mechanism captures the temporal causality of
drawing operations at a level appropriate for the application,
without the added complexity and delay of protocols that
provide guaranteed causal ordering.

3 Wb’s instantiation of the reliable
multicast algorithm

Whenever new data is generated by wb, it is multicast to the
group. Each member of the group is individually responsi-
ble for detecting loss and requesting retransmission. Loss
is normally detected by finding a gap in the sequence space.
However, since it is possible that the last drawop of a set is

dropped, each member sends low-rate, periodic, session mes-
sages that announce the highest sequence number received
from every member that has written on the page currently
being displayed. In addition to the reception state, the ses-
sion messages contain timestamps that are used to estimate
the distance (in time) from each member to every other (de-
scribed in Section 3.1).

When receiver(s) detect missing data, they wait for a ran-
dom time determined by their distance from the original
source of the data, then send a repair request (the timer cal-
culations are described in detail in Section 3.2). As with the
original data, repair requests and retransmissions are always
multicast to the whole group. Thus, although a number of
hosts may all miss the same packet, a host close to the point
of failure is likely to timeout first and multicast the request.
Other hosts that are also missing the data hear that request
and suppress their own request. (This prevents a request im-
plosion.) Any host that has a copy of the requested data can
answer a request. It will set a repair timer to a random value
depending on its distance from the sender of the request mes-
sage and multicast the repair when the timer goes off. Other
hosts that had the data and scheduled repairs will cancel their
repair timers when they hear the multicast from the first host.
(This prevents a response implosion). In a topology with
diverse transmission delays, a lost packet is likely to trigger
only a single request from a host just downstream of the point
of failure and a single repair from a host just upstream of the
point of failure. Section 5 explores in more detail the number
of requests and repairs in different topologies.

3.1 Session messages

As mentioned above, each member sends periodic session
messages that report the sequence number state for active
sources. Receivers use these session messages to determine
the current participants of the session and to detect losses.
The average bandwidth consumed by session messages is
limited to a small fraction (e.g., 5%) of the session data band-
width using the algorithm developed for vat and described in
[SCFJ94].

In a large, long-lived session, the state would become un-
manageable if each receiver had to report the sequence num-
bers of everyone who had ever written to the whiteboard. The
“pages” mentioned above are used to partition the state and
prevent this explosion. Each member only reports the state
of the page it is currently viewing. If a receiver joins late, it
may issuepage requeststo learn the existence of pages and
the sequence number state in each page. We omit the details
of the page state recovery protocol as it is almost identical to
the repair request / response protocol for data.

In addition to state exchange, receivers use the session
messages to estimate the one-way distance between nodes.
All whiteboard packets, including session packets, include a
Source-ID and a timestamp. The session packet timestamps
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are used to estimate the host-to-host distances needed by the
repair algorithm.

The timestamps are used in a highly simplified version
of the NTP time synchronization algorithm [M84]. Assume
that hostA sends a session packetP1 at time t1 and host
B receivesP1 at time t2. At some later time,t3, hostB
generates a session packetP2, marked with(t1;�) where
�=t3 � t2 (time t1 is included inP2 to make the algorithm
robust to lost session packets). Upon receivingP2 at time
t4, hostA can estimate the latency from hostB to hostA as
(t4� t1��) =2. Note that while this estimate does assume
that the paths are symmetric, it does not assume synchronized
clocks.

3.2 Loss recovery

The loss recovery algorithm provides the foundation for re-
liable delivery. In this section we describe the loss recovery
algorithm originally designed for wb; Section 7.1 describes
a modified version of this algorithm with an adaptive adjust-
ment of the timer parameters.

When host A detects a loss, it schedules a repair request
for a random time in the future. The request timer is chosen
from the uniform distribution on[C1dS;A;(C1 + C2) dS;A]

seconds, wheredS;A is host A’s estimate of the one-way delay
to the original source S of the missing data, andC1 andC2 are
parameters of the request algorithm. When the request timer
expires, host A multicasts a request for the missing data, and
doubles the request timer to wait for the repair.

If host A receives a request for the missing data before its
own request timer for that data expires, then host A does a
(random) exponential backoff, and resets its request timer.3

That is, if the current timer had been chosen from the uniform
distribution on

2i[C1dS;A; (C1 + C2) dS;A] ;

then the backed-off timer is randomly chosen from the uni-
form distribution on

2i+1
[C1dS;A; (C1 + C2) dS;A] :

When host B receives a request from A that host B is
capable of answering, host B sets a repair timer to a value
from the uniform distribution on

[D1dA;B ; (D1 + D2) dA;B]

3In the simulations described in later sections, we don’t backoff the
request timer for every duplicate request that is received. For example, if a
member receives several duplicate requests immediately after receiving the
initial request, then that member only backs off its request timer once, not
several times. After the initial timer backoff, we only backoff the timer again
if a request is received close to the time when the timer is set to expire. More
precisely, when we backoff the request timer, then we set anignore-backoff
variable to a time halfway between the current time and the expiration time,
and we ignore additional duplicate requests untilignore-backofftime.

seconds, wheredA;B is host B’s estimate of the one-way
delay to host A, andD1 andD2 are parameters of the repair
algorithm. If host B receives a repair for the missing data
before its repair timer expires, then host B cancels its repair
timer. Otherwise, when host B’s repair timer expires host B
multicasts the repair. Because host B is not responsible for
host A’s reliable data reception, it does not verify whether
host A actually receives the repair.

Due to the probabilistic nature of these algorithms, it is not
unusual for a dropped packet to be followed by more than one
request. Thus, a host could receive a duplicate request imme-
diately after sending a repair, or immediately after receiving
a repair in response to its own earlier request. In order to
prevent duplicate requests from triggering a responding set
of duplicate repairs, host B ignores requests for data D for
3dS;B seconds after sending or receiving a repair for that
data, where host S is either the original source of data D or
the source of the first request.

Because data represents idempotent operations, loss re-
covery can proceed independently from the transmission of
new data. Similarly, recovery for losses from two differ-
ent sources can also proceed independently. Since transmis-
sion bandwidth is often limited, a single transmission rate
is allocated to control the throughput across all these differ-
ent modes of operation, while the application determines the
order of packet transmission according to their relative im-
portance. In wb, the highest priority packets are repairs for
the current page, middle priority are new data, and lowest
priority are repairs for previous pages.

3.3 Bandwidth limitations

The congestion control mechanism for whiteboard sessions
is based on a (fixed, in current implementations) maximum
bandwidth allocation for each session. Each wb session has a
sender bandwidth limit advertised as part of the sd announce-
ment. A typical value is 64 Kbps; in this case a wb session
costs no more (and typically considerably less) than the ac-
companying audio session. Individual members use a token
bucket rate limiter to enforce this peak rate on transmissions.
This peak rate is mostly relevant when a source distributes a
postscript file for a new page of the whiteboard, or when a late
arrival requests the past history of the whiteboard session.

3.4 Recovery from partitioning

The whiteboard does not require special mechanisms for the
detection or recovery from network partitioning. Because
wb relies on the underlying concept of an IP multicast group,
where members can arrive and depart independently, wb does
not distinguish a partitioning from a normal departure of
members from the wb session.

During a partition of a session, users can simply continue
using the whiteboard in the connected components of the
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partitions. Because pages are identified by the Source-ID
of the initiator of the page, along with the page number for
that initiator, members can continue creating new pages dur-
ing the partition (e.g., “Floyd:3” in one half of the partition,
and “Zhang:5” in the other). After recovery each page will
still have a unique page ID and the repair mechanism will
distribute any new state throughout the entire group.

Almost all of the design described in this section is present
in version 1.59 of wb; some omissions are pending imple-
mentation. These omissions include the measurements of
one-way delays and the rate-limiting mechanisms.

4 Request/repair algorithms for simple
topologies

Building on our initial design experiences in wb, we turn to
a more general investigation of the loss recovery algorithms.
The algorithms described in the remainder of the paper have
been implemented only within our simulation framework.

Given that multiple hosts may detect the same losses, and
multiple hosts may attempt to handle the same repair re-
quest, the goal of the request/repair timer algorithms is to
de-synchronize host actions to keep the number of duplicates
low. Among hosts that have diverse delays to other hosts in
the same group, this difference in delay can be used to dif-
ferentiate hosts; for hosts that have similar delays to reach
others, we can only rely on randomization to de-synchronize
their actions.

This section discusses a few simple, yet representative,
topologies, namely chain, star, and tree topologies, to provide
a foundation for understanding the loss recovery algorithms
in more complex environments. For a chain the essential
feature of a loss recovery algorithm is that the timer value
be a function of distance. For a star topology the essential
feature of the loss recovery algorithm is the randomization
used to reduce implosion. Request/repair algorithms in a
tree combine both the randomization and the setting of the
timer as a function of distance. This section shows that the
performance of the loss recovery algorithms depends on the
underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the chain
aremembers of the multicast session. Each node in the under-
lying multicast tree has degree at most two. The chain is an
extreme topology where a simple deterministic loss recovery
algorithm suffices; in this section we assume thatC1; D1=1,
and thatC2; D2=0.

For the chain, as in most of the other scenarios in this paper,
link distance and delay are both normalized. We assume that
packets take one unit of time to travel each link, i.e. all links
have distance of 1.

: source of dropped packet

: failed edge

. . . . . .. . .

Lj L2 L1 R1 R2 RkL(j+1)

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to
the right or to the left of the congested link. Assume that
sourceLj multicasts a packet that is subsequently dropped
on link (L1,R1), and that the second packet sent from source
Lj is not dropped. We call the edge that dropped the packet,
whether due to congestion or to other problems, thecongested
link. Assume that the right-hand nodes each detect the failure
when they receive the second packet fromLj .

Assume that nodeR1 first detects the loss at timet, and
that each link has distance 1. Then nodeR1 multicasts a
request at timet + j. NodeL1 receives the request at time
t + j + 1 and multicasts a repair at timet + j + 2. NodeRk

receives the repair at timet + k + j + 2.
Note that all nodes to the right of nodeR1 receive the

request fromR1 before their own request timers expire. We
call this deterministic suppression. The reader can verify
that, due to deterministic suppression, there will be only one
request and one repair.

Had the loss repair been done by unicast, i.e. nodeRk

sent a unicast request to the sourceLj as soon as it detected
the failure andLj sent a unicast repair toRk as soon as it
received the request, nodeRk would not receive the repair
until time t + 2j + 3k. Thus, with a chain and with a sim-
ple deterministic loss recovery algorithm, the furthest node
receives the repair sooner than it would if it had to rely on its
own unicast communication with the original source. While
the original source and the intended recipient of the dropped
packet could be arbitrarily far from the congested link, in
the multicast repair algorithm both the request and the repair
come from the node immediately adjacent to the congested
link.

4.2 Stars

For the star topology in Figure 2 we assume that all links
are identical and that the center node is not a member of the
multicast group. For a star topology, setting the request timer
as a function of the distance from the source is not an essential
feature, as all nodes detect a loss at exactly the same time.
Instead, the essential feature of the loss recovery algorithm
in a star is the randomization used to reduce implosion; we
call thisprobabilistic suppression.

For the star topology in Figure 2 assume that the first packet
from nodeN1 is dropped on the adjacent link. There areG
members of the multicast session, and the other members
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: source of dropped packet

: failed edge

N1

N2

N3

N4
N5

N6

. . .
Ng

Figure 2: A star topology.

detect the loss at exactly the same time. For the discussion
of this topology we assume thatC1; D1=0; because all nodes
detect losses and receive requests at the same time,C1 and
D1 are not needed to amplify differences in delay. The only
benefit in settingC1 greater than 0 is to avoid unnecessary
requests from out-of-order packets.

If C2 is at most 1, then there will always beG�1 requests.
IncreasingC2 reduces the expected number of requests but
increases the expected time until the first request is sent.
For C2 > 1, the expected number of requests is roughly
1 +(G� 2) =C2, and the expected delay until the first timer
expires is 2C2=G seconds (where one unit of time is one
second).4 For example, ifC2 is set to

p
G, then the expected

number of requests is roughly
p
G, and the expected delay

until the first timer expires is 2=
p
G seconds. The same re-

marks apply toD2 with respect to repairs.

4.3 Bounded-degree trees

The loss recovery performance in a tree topology uses both
the deterministic suppression described for chain topologies
and the probabilistic suppression described for star topolo-
gies. Consider a network topology of a bounded-degree tree
with N nodes where interior nodes have degreep. A tree
topology combines aspects of both chains and stars. The
timer value should be a function of distance, to enable re-
quests and repairs to suppress request and repair timers at
nodes further down in the tree. In addition, randomization is
neededto reduce request/repair implosion from nodes that are
at an equal distance from the source (of the dropped packet,
or of the first request).

We assume that node S in the tree is the source of the
dropped packet, and that link (B,A) drops a packet from
source S. We call nodes on the source’s side of the con-
gested link (including node B)good nodes, and nodes on
the other side of the congested link (including node A)bad
nodes. Node A detects the dropped packet at timet, when it
receives the next packet from node S. We designate node A

4TheG � 1 nodes all detect the failure at the same time, and all set
their timers to a uniform value in an interval of width 2C2. If the first timer
expires at timet, then the otherG � 2 receivers receive that first request
at timet + 2. So the expected number of duplicate requests is equal to the
expected number of timers that expire in the interval [t, t + 2].

as alevel-0node, and we call a bad node alevel-i node if it
is at distancei from node A.

Assume that the source of the dropped packet is at distance
j from node A. Node A’s request timer expires at time

t + C1j + U1[C2] j;

whereU[C2] denotes a uniform random variable between 0
andC2. Assuming that node A’s request is not suppressed, a
level-i node receives node A’s request at time

t + i + C1j + U1[C2] j:

Node B receives node A’s repair request at time

t + 1 + C1j + U1[C2] j:

A bad level-i node detects the loss at timet + i, and such
a node’s request timer expires at some time

t + i + C1(i + j) + U2[C2] (i + j) :

Note that regardless of the values ofU1[C2] andU2[C2], a
level-i node receives node A’s request by timet + i + C1j +

C2j; and a level-i node’s request timer expires no sooner than
t + i + C1(i + j) : If

t + i + C1j + C2j � t + i + C1(i + j) ;

that is, if
C2

C1
j � i;

then the level-i node’s request timer will always be sup-
pressed by the request from the level-0 node. Thus, the
smaller the ratioC2=C1, the fewer the number of levels that
could be involved in duplicate requests. This relation also
demonstrates why the number of duplicate requests or repairs
is smaller when the source (of the dropped packet, or of the
request) is close to the congested link.

Note that the parameterC1 serves two different functions.
A smaller value forC1 gives a smaller delay for node B to
receive the first request. At the same time, for nodes further
away from the congested link, a larger value forC1 con-
tributes to suppressing additional levels of request timers. A
similar tradeoff occurs with the parameterC2. A smaller
value forC2 gives a smaller delay for node B to receive the
first repair request. At the same time, for topologies such
as star topologies, a larger value forC2 helps to prevent du-
plicate requests from session members at the same distance
from the congested link. Similar remarks apply to the func-
tions ofD1 andD2 in the repair timer algorithm.

5 Simulations of the request and repair
algorithms

For a given underlying network, set of session members,
session sources, and congested link, it should be feasible to
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analyze the behavior of the repair and request algorithms,
given fixed timer parametersC1,C2,D1, andD2. However,
we are interested in the repair and request algorithms across a
wide range of topologies and scenarios. We use simulations
to examine the performance of the loss recovery algorithms
for individual packet drops in random and bounded-degree
trees. We do not claim to be presenting realistic topologies
or typical patterns of packet loss.

The simulations in this section show that the loss recov-
ery algorithms with fixed timer parameters perform well in
a random or bounded-degree tree when every node in the
underlying tree is a member of the multicast session. The
loss recovery algorithms perform somewhat less well for a
sparse session, where the session size is small relative to the
size of the underlying network and the members are scat-
tered throughout the net. This motivates the development on
the adaptive loss recovery algorithm in Section 7.1, where the
timer parametersC1,C2,D1, andD2 are adjusted in response
to past performance.

In these simulations the fixed timer parameters are set as
follows: C1; C2=2, andD1; D2=log10G, whereG is the num-
ber of members in the same multicast session. The choice of
log10G forD1 andD2 is not critical, but gives slightly better
performance thanD1; D2=1 for large G.

Each simulation constructs either a random tree or a
bounded degree tree withN nodes as the network topology.
Next,G of theN nodes are randomly chosen to be session
members, and a source S is randomly chosen from theG

session members.
We assume that messages are multicast to members of the

multicast group along a shortest-path tree from the source of
the message. In each simulation we randomly choose a link
L on the shortest-path tree from source S to theG members
of the multicast group. We assume that the first packet from
source S is dropped by link L, and that receivers detect this
loss when they receive the subsequent packet from source S.

5.1 Illustrating the simulator

In this section we show one of the tools that we use to verify
that our simulator is implementing the loss recovery algo-
rithms correctly. This figure also serves as a concrete illus-
tration of the loss recovery algorithms in operation.

: source of dropped packet

: failed edge

5 4

3 2 1

6

Figure 3: A simulation network for the figure above.
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Figure 4: A request/repair exchange from a single dropped
packet.

Figure 4 shows a single request/repair exchange for the
network in Figure 3. This is one of a series of automated
tests that we run after each change we make to our simula-
tor. The underlying network shown in Figure 3 consists of a
randomly-created tree of six nodes. A packet takes one unit
of time to traverse each link.

In Figure 4 thex-axis shows time. They-axis shows a row
for each session member, indicating when timers are set and
repair and request packets sent and received by that member.
This simulation uses the fixed timer parametersC1; C2=2 and
D1;D2=1.

For each member affected by the loss, we define theloss
recovery delayas the time from when the member first de-
tected the loss until the member first received a repair. The
graph shows this loss recovery delay as a multiple of RTT,
the roundtrip time from the receiver to the original source of
the dropped packet. The simulator’s summary statistics cor-
rectly report that the delay/RTT for the last node to receive
the repair is 0.65. This is for node 1, which detects the loss
at time 4, receives the repair at time 9.2, and has a RTT of 8
to the source of the dropped packet.

Note that with unicast communications the ratio of loss
recovery delay to RTT is at least one. For a unicast receiver
that detects a packet loss by waiting for a retransmit timer
to time out, the typical ratio of delay to RTT is closer to
2. As the earlier discussion of chain topologies shows, with
multicast loss recovery algorithms the ratio of delay to RTT
can sometimes be less than one, because the request and/or
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repair could each come from a node close to the point of
failure.

Figure 4 can be read in two ways to verify the correctness
of the algorithms implemented in the simulator. First, a single
row shows the history of a single member. We leave the
verification of each row as an exercise for the reader. Second,
for each multicast request or repair, the figure shows when
that message was received by each of the other nodes.

5.2 Simulations on random trees

We first consider simulations on random labeled trees ofN

nodes, constructed according to the labeling algorithm in
[Pa85, p.99]. These trees have unbounded degree, but for
largeN , the probability that a particular vertex in a random
labeled tree has degree at most four approaches (approxi-
mately) 0.98 [Pa85, p.114]. Figure 5 shows simulations of
the loss recovery algorithm for this case, where allN nodes in
the tree are members of the multicast session (that is,G=N).
For each graph thex-axis shows the session sizeG; twenty
simulations were run for each value ofG. Each simulation is
represented by a jittered dot, and the median from the twenty
simulations is shown by a solid line. The two dotted lines
mark the upper and lower quartiles; thus, the results from
half of the simulations lie between the two dotted lines.
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Figure 5: Random trees with a random congested link, where
all nodes are members of the multicast session.

The top two graphs in Figure 5 show the number of re-
quests and repairs to recover from a single loss. The bottom
graph shows the loss recovery delay of the last node in the
multicast session to receive the repair.

Figure 5 shows that the repair/request algorithm works
well for a tree topology where all nodes of the tree are mem-
bers of the multicast session. There is usually only one re-
quest and one repair. (Some lack of symmetry results from
the fact that the original source of the dropped packet might
be far from the point of failure, while the first request comes
from a node close to the point of failure.) The average recov-
ery delay for the farthest node is less than 2 RTT, competitive
with the average delay available from a unicast algorithm
such as TCP. The results are similar in simulations where the
congested link is chosen adjacent to the source of the dropped
packet, and for simulations on a bounded-degree tree of size
N=G where interior nodes have degree 4.

5.3 Simulations on large bounded-degree
trees

The performance of the loss recovery algorithms with fixed
timer parameters is less optimal when the underlying network
is a large bounded-degree tree. The underlying topology for
the simulations in this section is a balanced bounded-degree
tree ofN=1000 nodes, with interior nodes of degree four.
In these simulations the session sizeG is significantly less
thanN . For a session that is sparse relative to the underlying
network, the nodes close to the congested link might not be
members of the session.

As Figure 6 shows, the average number of repairs for each
loss is somewhat high. In simulations shown in [FJLMZ95]
where the congested link is always adjacent to the source, the
number of repairs is low but the average number of requests
is high.

[FJLMZ95] shows the performance of the loss recovery
algorithm on a range of topologies. These include topolo-
gies where each of theN nodes in the underlying network is
a router with an adjacent Ethernet with 5 workstations, point-
to-point topologies where the edges have a range of propa-
gation delays, and topologies where the underlying network
is more dense that a tree. None of these variations that we
have explored have significantly affected the performance of
the loss recovery algorithms with fixed timer parameters.

6 Exploring the parameter space

As the previous section showed, a particular set of values
for the timer parametersC1, C2, D1, andD2 that performs
well in one scenario might not perform well in another sce-
nario. In this section we choose a few simple topologies,
and explore the behavior of the request/repair algorithms as
a function of the request timer parameterC2; C1 is set to
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Figure 6: Bounded-degree tree, degree 4, 1000 nodes, with
a random congested link.

2. In the following section we discuss adaptive algorithms
where the timer parameters are adjusted as a function of the
past performance of the loss recovery algorithms.

For a star topology with sparse trees, there is a clear trade-
off between the delay and the number of duplicates. In con-
trast, with a chain topology, settingC2 to zero gives the op-
timal behavior both in terms of delay and in the number of
duplicates. Although the performance for a dense tree is
more complex than either a star or a chain, a small value
for C2 gives good performance in terms of both delay and
duplicates.

Figure 7 shows the tradeoffs between delay and duplicates
in a star topology of size 100. We define therequest delay
for a session member as the delay from when the request
timer is set until a request was either sent by that member or
received from another member. The top graph in Figure 7
contains a dot for each integer value ofC2 from 1 to 100, for
the star topology described in Section 4.2. For each dot, the
x-coordinate is the expected request delay for that value of
C2, and they-coordinate is the expected number of requests.

More precisely, thex-coordinate is given by the expected
request delay for the bad member closest to the source of the
dropped packet, expressed as a multiple of the roundtrip time
from that member to the source of the dropped packet. When
there is not a unique bad member at the minimum distance

Star Topology
Expected Request Delay (in units of RTT)
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Star Topology
Simulation Results of Average Request Delay (in units of RTT)
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Figure 7: Tradeoff between delay and duplicates in a star
topology.
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Figure 8: Tradeoff between delay and duplicates in a chain
topology.

from the source, as in a star topology, then thex-axis shows
the expected smallest request delay from those members at
the minimum distance from the source. For a star topology
this is the request delay for that member whose request timer
expires first.

From the heuristic analysis in Section 4.2, the expected
request delay (in units of the RTT of 2D) is as follows:

C1D + C2D=G

2D

=C1=2 + C2=(2G) ;

whereD is the distance in seconds from the source to a ses-
sion member. From Section 4.2, the expected number of
requests is estimated as 1+(G� 2) =C2. The “x” in Figure
7 shows the results forC2=0, and the “+” shows the results for
C2=10. Thus the top graph of Figure 7 shows that increasing
C2 in a star topology increases the expected request delay
slightly while significantly decreasing the expected number
of requests.

The bottom graph in Figure 7 shows the results from sim-
ulations, which concur with the analytical results in the top
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graph. For each integer value ofC2 from 0 to 100, twenty
simulations are run, and the request delay and total number
of requests is calculated for each simulation. Each simula-
tion is represented by a jittered dot, and the line shows the
average for each value ofC2. Thus, the graph shows that for
C2 set to 100, the average number of requests is 1.5 and the
average request delay, as a multiple of the RTT, is 1.42. The
minimum request delay of 1 comes from the fixed value of 2
for request parameterC1.

Figure 8 shows the results from the chain topology dis-
cussed in Section 1. For a chain, withC2 set to zero there
will be exactly one request, with request delayC1=(2D).
IncreasingC2 can increase both the expected request delay
and the expected number of duplicates. The four lines in
Figure 8 show the results for a chain topology with a failed
edge 1, 2, 5, or 10 hops, respectively, from the source of the
dropped packet. The individual simulations are shown by a
dot only for the simulations with a failed edge one hop from
the source. For each scenarioC2 ranges from 0 to 10 in in-
crements of 1, and then from 10 to 100 in increments of 10.
While increasingC2 can increase the number of duplicates,
the magnitude of the increase is quite small.

Figures 9 and 10 show the results for a range of tree topolo-
gies. Each line shows the results for a particular fixed sce-
nario, asC2 varies from 0 to 100. In all of the scenarios
the session size is at least 100. We define thedensityof a
tree as the fraction of nodes that are members of the mul-
ticast session. In each graph, the lines represent scenarios
that differ only in the number of hops between the source
and the failed edge. The four lines represent scenarios with
failed edges that are one, two, three, or four hops, respec-
tively, from the source of the dropped packet. For all of the
topologies, the failed edge closest to the source gives the line
with the worst-case number of duplicate requests. For this
line, the individual simulations are each shown by a jittered
dot. Note that the graphs do not necessarily show all of the
dots.

As an example, the top graph in Figure 9 shows the results
for trees of density 1. For each of the lines the average
number of duplicates is minimized forC2=0, and maximized
for an intermediate value ofC2. In particular, for a failed
edge adjacent to the source of the failed packet,C2 set to 40
gives an average number of duplicates of 4.1. However, the
only simulations in this section that give unacceptably large
numbers of requests are those with small values forC2 on
stars or on trees with sparse sessions.

(Tree Topology, Degree 4, Session Membership Density 1),
Simulation Results of Average Request Delay (in units of RTT)
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Figure 9: Tradeoff between delay and duplicates in dense
tree topologies.

7 Extending the basic approach

7.1 Adaptive adjustment of random timer al-
gorithms

The close connection of the loss recovery performance with
the underlying topology of the network suggests that the

11
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Figure 10: Tradeoff between delay and duplicates in a sparse
tree topology.

timer parametersC1,C2,D1, andD2 be adjusted in response
to the past behavior of the loss recovery algorithms. In this
section we describe an adaptive algorithm that adjusts the
timer parameters as a function of both the delay and of the
number of duplicate requests and repairs in recent loss re-
covery exchanges.

For sparse sessions, which we expect to be the most com-
mon, there is a tradeoff between the delay and the number of
duplicates; increasingC2 decreases the expected number of
duplicate requests but increases the expected request delay.
However, the exact nature of the duplicate/delay curve de-
pends on the topology and on the (possibly changing) failure
scenario and session membership. Thus, for a sparse session
the approach is to adjustC2 dynamically, as a function of the
past history of the request algorithms, to achieve the desired
tradeoff between duplicates and delay.

The previous section shows that for dense trees where the
failed edge is close to the source, increasingC2 equally for all
session members can increase both the delay and the number
of duplicate requests. In this case, one strategy to minimize
the number of duplicate requests is to rely on deterministic
suppression, with members closest to the point of failure
sending requests first. This deterministic suppression can
be created in a dense tree if the request parametersC1 and
C2 are reasonably small for at least one member close to the
point of failure.

One mechanism for encouraging deterministic suppres-
sion in a dense tree is for members to reduceC1 after they
send a request. Members who frequently send requests are
likely to also be members who are close to the point of fail-
ure, and in a dense tree, reducingC1 for those members
aids the deterministic suppression. In a star topology with-
out deterministic suppression it does no harm to reduceC1

for members who frequently send requests. ReducingC1 in
this fashion can actually help to break symmetry in a star,
encouraging certain members to continue sending requests
early.

A second mechanism for encouraging deterministic sup-
pression in a dense tree is for members who have sent requests

to reduceC2 if the duplicate requests that they have received
came from members significantly further from the source of
the failed packet. This mechanism for requests requires that
requests include the requestor’s estimated distance from the
original source of the requested packet. The correspond-
ing mechanism for replies requires that replies include the
replier’s estimated distance from the source of the request.

After sending a request:
decrease start of req. timer interval

Before each new request timer is set:
if requests sent in prev. rounds, and any
dup. requests were from further away:

decrease request timer interval
else if ave. dup. requests high:

increase request timer interval
else if ave. dup. requests low
and ave. req. delay too high:

decrease request timer interval

Figure 11: Dynamic adjustment algorithm for request timer
interval.

Figure 11 gives the outline of a duplicates-based dynamic
adjustment algorithm for adjusting the request timer param-
eters. A corresponding algorithm applies for adjusting the
reply timer parameters. This adaptive algorithm combines a
general adaption performed by all members when they set a
request timer with more specific adaptions performed only
by members who have recently sent requests. For the gen-
eral adaption, if the average number of duplicate requests is
too high, then the adaptive algorithm increases the request
timer interval. Alternately, if the average number of dupli-
cates is okay but the average delay in sending a request is too
high, then the adaptive algorithm decreases the request timer
interval. In this fashion the algorithm can adapt the timer
parameters not only to fit the fixed underlying topology, but
also to fit a changing session membership and pattern of con-
gestion.

First we describe how a session member measures the av-
erage delay and number of duplicate requests in previous loss
recovery rounds in which that member has been a participant.
A request periodbegins when a member first detects a loss
and sets a request timer, and ends only when that member
begins a new request period. The variabledup req keeps
count of the number of duplicate requests received during
one request period; these could be duplicates of the most re-
cent request or of some previous request, but do not include
requests for data for which that member never set a request
timer. At the end of each request period, the member updates
avedup req, the average number of duplicate requests per re-
quest period, before resettingdup req to zero. The average
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is computed as an exponential-weighted moving average,

ave dup req  (1� �) ave dup req + � dup req;

with �=1=4 in our simulations. Thus,avedup reqgives the
average number of duplicate requests for those request events
for which that member has actually set a request timer.

When a request timer either expires or is reset for the first
time, indicating that either this member or some other mem-
ber has sent a request for that data, the member computes
req delay, the delay from the time the request timer was
first set (following the detection of a loss) until a request was
sent (as indicated by the time that the request timer either
expired or was reset). The variablereq delay expresses this
delay as a multiple of the roundtrip time to the source of
the missing data. The member computes the average request
delay,ave req delay.

In a similar fashion, arepair periodbegins when a member
receives a request and sets a repair timer, and ends when a
new repair period begins. In computingdup rep, the number
of duplicate repairs, the member considers only those repairs
for which that member at some point set a repair timer. At
the end of a repair period the member updatesavedup rep,
the average number of duplicate repairs.

When a repair timer either expires or is cleared, indicating
that this member or some other member sent a repair for
that data, the member computesrep delay, the delay from
the time the repair timer was set (following the receipt of a
request) until a repair was sent (as indicated by the time that
the repair timer either expired or was cleared). As above, the
variablerep delay expresses this delay as a multiple of the
roundtrip time to the source of the missing data. The member
computes the average repair delay,ave rep delay.

Figure 12 gives the adaptive adjustment algorithm used in
our simulator to adjust the request timer parametersC1 and
C2. The adaptive algorithm is based on comparing the mea-
surementsavedup reqandave req delaywith AveDups and
AveDelay, the target bounds for the average number of du-
plicates and the average delay. An identical adjustment algo-
rithm is used to adapt the repair timer parametersD1 andD2,
based on the measurementsavedup repandave rep delay.
Figure 13 gives the initial values used in our simulations for
the timer parameters. All four timer parameters are con-
strained to stay within the minimum and maximum values in
Figure 13.

Thenumerical parameters in Figure 12 of 0.05, 0.1, and 0.5
were chosen somewhat arbitrarily. The adjustments of�0:05
and+ 0:1 for C1 are intended to be small, as the adjustment
of C1 is not the primary mechanism for controlling the num-
ber of duplicates. The adjustments of�0:1 and+ 0:5 forC2

are intended to be sufficiently small to minimize oscillations
in the setting of the timer parameters. Sample trajectories
of the loss recovery algorithms confirm that the variations
from the random component of the timer algorithms domi-
nate the behavior of the algorithms, minimizing the effect of

After a request timer expires or is first
reset:

update ave req delay
After sending a request:

C1 � =0:1
Before each new request timer is set:

update avedup req
if closestrequestor on past requests:

C2 � =0:1
else if ( avedup req � AveDups)):

C1 + =0:1
C2 + =0:5

else if ( avedup req < AveDups��):
if ( ave req delay > AveDelay):

C2 � =0:1
if ( avedup req < 1/4):

C1 � =0:05
else C1 + =0:05

Figure 12: Dynamic adjustment algorithm for request timer
parameters. In our simulations�=0:1

Initial values:
C1=2
D1=log10G

C2=2
D2=log10G

Fixed parameters:
MinC1=0:5; MaxC1=2
MinC2=1; MaxC2=G
MinD1=0:5; MaxD1=log10G

MinD2=1; MaxD2=G
AveDups=1
AveDelay=1

Figure 13: Parameters for adaptive algorithms

oscillations.
In our simulations we use a multiplicative factor of 3 rather

than 2 for the request timer backoff described in Section 3.2.
With a multiplicative factor of 2, and with an adaptive algo-
rithm with small minimum values forC1, a single node that
experiences a packet loss could have its backed-off request
timer expire before receiving the repair packet, resulting in
an unnecessary duplicate request.

We have not attempted to devise an optimal adaptive al-
gorithm for reducing some function of both delay and of
the number of duplicates; such an optimal algorithm could
involve rather complex decisions about whether to adjust
mainlyC1 orC2, possibly depending on such factors as that
member’s relative distance to the source of the lost packet. In
a sparse tree, increasingC2 reduces the number of duplicate
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Figure 14: The non-adaptive algorithm.
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Figure 15: The adaptive algorithm.

requests; our adaptive algorithm relies largely on increases
of C2 to reduce duplicates. Our adaptive algorithm also de-
creasesC2 for members who have sent requests, if duplicate
requests have come from members further from the source
of the requested packet. (In our simulations “further from
the source” is defined as “at a reported distance greater than
1.5 times the distance of the current member”.) Our adaptive
algorithm only decreasesC1 for members who have sent re-
quests, or when the average number of duplicates is already
small.

Figures 14 and 15 show simulations comparing adaptive
and non-adaptive algorithms. The simulation set in Figure
14 uses fixed values for the timer parameters, and the one in
Figure 15 uses the adaptive algorithm. From the simulation
set in Figure 6, we chose a network topology, session mem-
bership, and drop scenario that resulted in a large number of
duplicate requests with the non-adaptive algorithm. The net-
work topology is a bounded-degree tree of 1000 nodes with
degree 4 for interior nodes, and the multicast session consists
of 50 members.

Each of the two figures shows ten runs of the simulation,
with 100 loss recovery rounds in each run. For each round
of a simulation, the same topology and loss scenario is used,
but a new seed is used for the pseudo-random number gen-
erator to control the timer choices for the requests and re-
pairs. In each round a packet from the source is dropped on
the congested link, a second packet from the source is not
dropped, and the loss recovery algorithms are run until all
members have received the dropped packet. Thex-axis of
each graph shows the round number. For each figure, the top
graph shows the number of requests in that rounds, and the

bottom graph shows the loss recovery delay. Each round of
each simulation is marked with a jittered dot, and a solid line
shows the median from the ten simulations. The dotted lines
show the upper and lower quartiles.

For the simulations in Figure 14 with fixed timer parame-
ters, one round differs from another only in that each round
uses a different set of random numbers for choosing the
timers.

For the simulations with the adaptive algorithm in Figure
15, after each round of the simulation each session member
uses the adaptive algorithms to adjust the timer parameters,
based on the results from previous rounds. Figure 15 shows
that for this scenario, the adaptive algorithms quickly reduce
the average number of repairs, along with a small reduction
in delay.

Figures 16 and 17 show the request and repair timer pa-
rameters for three 200-round executions of the simulations in
Figure 15. For this scenario, the loss neighborhood consists
of only two members, and the number of duplicate requests
can be at most one. For each execution of the simulation,
Figure 16 shows the request timer parametersC1 andC2 for
both session members in the loss neighborhood. For each of
the three simulations, a line marked “A” show the request
parameters for the member closer to the point of failure, and
a line marked “B” shows the request parameters for the mem-
ber further away. For both nodes the parameterC2 is slowly
decreased to its minimum value, whileC1 is lower for the
node closer to the point of failure.

Figure 17 shows the repair timer parametersD1 andD2 for
two of the session members not in the loss neighborhood, the
one closest to the point of failure (represented by the three
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Figure 16: Request timer parameters for three executions of
the simulation.
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Figure 17: Repair timer parameters for three executions of
the simulation.

lines marked “A”), and the other further away (represented
by the three lines marked “B”). After the 100th round, for
the member further from the point of failure the parameter
D2 has almost reached its maximum value of 50, andD2

remains close to 50 for the remaining rounds. The initial
rapid increase ofD2 results in a decrease in the number of
duplicate repairs. At the same time,D2 remains small for
the member closest to the point of failure.

Figure18 shows the results of the adaptive algorithm on the
same set of scenarios as that in Figure 6. For each scenario
(i.e., network topology, session membership, source mem-
ber, and congested link) in Figure 18, the adaptive algorithm
is run repeatedly for 40 loss recovery rounds, and Figure 18
shows the results from the 40th loss recovery round. Com-
paring Figures 6 and 18 shows that the adaptive algorithm is
effective in controlling the number of duplicates over a range
of scenarios.
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Figure 18: Adaptive algorithm on round 40, for a bounded-
degree tree of 1000 nodes with degree 4 and a randomly
picked congested link.

Simulations in [FJLMZ95] show that the adaptive algo-
rithm works well in a wide range of conditions. These in-
clude scenarios where only one session member experiences
the packet loss; where the congested link is chosen adjacent
to the source of the packet to be dropped; and for a range of
underlying topologies, including 5000-node trees, trees with
interior nodes of degree 10; and connected graphs that are
more dense that trees, with 1000 nodes and 1500 edges.

In actual multicast sessions, successive packet losses are
not necessarily from the same source or on the same network
link. Simulations in [FJLMZ95] show that in this case, the
adaptive timer algorithms tune themselves to give good aver-
age performance for the range of packet drops encountered.
Simulations in [FJLMZ95] show that, by choosing different
values for AveDelay and AveDups, tradeoffs can be made be-
tween the relative importance of low delay and a low number
of duplicates.

In the simulations in this section, none of the requests or
repairs are themselves dropped. In more realistic scenarios
where not only data messages but requests and repairs can
be dropped at congested links as well, members have to rely
on retransmit timer algorithms to retransmit requests and re-
pairs as needed. Obviously, this will increase not only the
delay, but also the number of duplicate requests and repairs
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in different parts of the network. The use of local recov-
ery, described in the following section, would help to reduce
the unnecessary use of bandwidth in the loss recovery algo-
rithms.

7.2 Local recovery

With the global loss recovery algorithm described above,
even if a packet is dropped on a link to a single member,
both the request and the repair are multicast to the entire
group. In cases where the neighborhood affected by the loss
is small, the bandwidth costs of the loss recovery algorithm
can be reduced if requests and repairs are multicast to a lim-
ited area. For example, studies of packet loss patterns in the
current Mbone [YKT95] suggest that packet loss in multi-
cast traffic is most likely to occur not in the “backbone” but
in the “edges” of the multicast network. Scenarios that could
benefit from local recovery include sessions with persistent
losses to a small neighborhood of members and isolated late
arrivals to a multicast session that ask for back history.

In this section we show that local recovery can be quite
effective in reducing the unnecessary use of bandwidth. We
are not at this stage proposing a specific set of mechanisms
for implementing local recovery; there are still many open
questions. For example, what algorithms should a mem-
ber use to decide whether to use global or local scope for
a specific request? How are these algorithms affected by
application-specific relative priorities between minimizing
delay and minimizing bandwidth? What are the best mecha-
nisms to implement the “local-recovery neighborhoods” dis-
cussed below?

Local recovery assumes that the member sending the re-
quest has some information about the neighborhood of mem-
bers sharing recent losses. However, end nodes should not
know about network topology. We define aloss neighbor-
hoodas a set of members who are all experiencing the same
set of losses. End nodes can learn about “loss neighbor-
hoods” from information in session messages, without learn-
ing about the network topology. For each member, we call
a loss alocal lossif the number of members experiencing
the loss is much smaller than the total number of members
in the session. To help identify loss neighborhoods, session
messages could report the names of the last few local losses.
In addition, session messages could report the fraction of
received repairs that areredundant, that is, those repairs re-
ceived for known data, for which that member never set a
request timer. A member could use local recovery when
past losses have often been limited to members of a single
loss neighborhood, and a request sent locally seems likely to
reach some member capable of answering the request. If no
repair is received before a backed-off request timer expires,
then the second request can be sent with global scope.

One mechanism described in [FJLMZ95] for implement-
ing local recovery is to set an appropriate “hop count” in the

time-to-live(TTL) field of the IP header of multicast pack-
ets. However, simulations in [FJLMZ95] suggest that even
assuming an optimal execution of the local recovery algo-
rithms, the effectiveness of a simple hop-count-based local
recovery in limiting the unnecessary use of bandwidth can
depend heavily on the topology of the underlying network.

However, for a topology with naturally-definedneighbor-
hoods, and some mechanism for restricting request and repair
messages to these neighborhoods, local recovery algorithms
can be quite effective. Simulations in this section illus-
trate local recovery based onlocal-recovery neighborhoods,
where there is some mechanism that allows each member in
the local-recovery neighborhood to send requests and repairs
only to the members within that neighborhood. It is appropri-
ate for a member to send a request limited to a local-recovery
neighborhood when past experience indicates both the loss
neighborhood, and some member capable on answering re-
quests, are likely to be contained within the local-recovery
neighborhood. Note that a network using pure hop-count-
based local recovery, where each link counts as one hop and
has a threshold of one, is not using local-recovery neighbor-
hoods as defined above. In such a network, nearby members
send local-recovery messages to slightly different, overlap-
ping sets of nodes, rather than to the same neighborhood.

For TTL-based local recovery, local-recovery neighbor-
hoods can be created by assigning high thresholds to links at
the boundaries of a neighborhood. [FJLMZ95] discusses in
more detail the mechanisms that would be needed for TTL-
based local recovery neighborhoods. Local-recovery neigh-
borhoods could also be defined by administrative scoping
mechanisms incorporated in the multicast routing [J94c], by
boundaries between hierarchies in the underlying hierarchi-
cal multicasting [TD95], or by separately-created multicast
groups.

To introduce a network with local-recovery neighbor-
hoods, we create the mesh-based network shown in Fig-
ure 19, with a central mesh and subtrees attached to each
node in the mesh. We chose this topology because it roughly
matches the topology of the Mbone, which can be considered
as consisting of naturally-defined neighborhoods separated
by transcontinental links and by backbone links within coun-
tries. For a 1000-node network, the mesh contains 19 nodes,
all but one of the subtrees contain 53 nodes, and each sub-
tree is a bounded-degree tree of degree four. We assume that
each subtree is a separate local-recovery neighborhood. For
a TTL-based local recovery scheme, for example, this could
be accomplished by assigning high thresholds to the links
within the mesh, and thresholds of one to the links within the
subtrees.

Figure 20 shows that local recovery based on local-
recovery neighborhoods can be quite effective. For the sim-
ulations in Figure 20, the local recovery options are very
simple. Each member only has two choices when it sends a
packet: to send the packet to the entire multicast group, or
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Figure 19: A mesh-based graph with subtrees of 53 nodes.
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Figure 20: Local recovery in a mesh-based graph with 1000
nodes.

to send the packet only to those members within the same
local-recovery group (i.e., subtree).

For each session size, twenty simulations are run, each
with a different session membership and source and con-
gested link for the dropped packet. We only consider sce-
narios where the loss neighborhood contains at most 10% of
the session members. To explore the optimal possible per-
formance of neighborhood-based local recovery algorithms
in these simulations, when both the loss neighborhood and
some member capable of answering a request are contained
with the local-recovery neighborhood, the request is sent us-
ing local scope, and otherwise the request is sent using global
scope.

In the top graph of Figure 20, thex-axis shows the session

size, and they-axis shows the fraction of session members
reached by the repair. In the bottom graph, they-axis shows
the number of session members in therepair neighborhood,
that is, the number of session members reached by the repair,
as a multiple of the number of members in the loss neighbor-
hood itself. The results of each simulation are represented by
a jittered dot. The three lines indicate the first, second, and
third quartiles. Figure 20 shows that neighborhood-based
local recovery can be very effective in reducing the unnec-
essary use of bandwidth in the loss recovery events. With
random choices for session members, congested links, and
sources of the dropped packet, with the additional restriction
that the loss neighborhood contain at most 10% of the ses-
sion members, it is often the case for sessions with at least 20
members that both the loss neighborhood and some member
capable of answering a request will be contained within a
single local-recovery area.

8 Application-specific and general as-
pects of reliable multicast

Section 2 discussed some of the underlying assumptions in
the design of reliable multicast for wb. In this section we ex-
plore some of the ways that the reliable multicast framework
described in this paper could be used and modified to meet
the needs of other applications for reliable multicast.

A fundamental concept in our reliable multicast algorithm
is amulticast group, i.e. a set of hosts that (1) can be reached
by a group address without being identified individually first,
and (2) share the same application data and thus can help
each other with loss recovery. This group concept is also
appropriate for applications such as routing protocol updates
and DNS updates, as well as for the group distribution of
stock quotes, Usenet news, or WWW-based mass media.

Let’s take the Border Gateway Protocol (BGP) as an exam-
ple. The Internet is viewed as a set of arbitrarily connected
autonomous systems (AS) that are connected through bor-
der gateways that speak BGP to exchange routing informa-
tion. One AS may have multiple BGP speakers, and all BGP
speakers representing the same AS must give a consistent
image of the AS to the outside, i.e. they must maintain con-
sistent routing information. In the current implementation,
this consistency is achieved by each BGP router opening a
TCP connection to each other BGP router to deliver routing
updates reliably. There are several problems with this ap-
proach. First, achieving multicast delivery by multiple one-
to-one connections bears a high cost. Second, for an AS with
N BGP routers, one has to manually configure the (N � 1)
TCP connections for each of theN routers, and repeat again
whenever a change occurs. Both of these problems could be
solved by applying our reliable multicast algorithm, perhaps
with some minor adjustments to the data persistence model.

Our reliable multicast framework could easily be adapted
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for the distribution of such delay-insensitive material as
Usenet news. Different applications have different trade-
offs between minimizing delay and minimizing the number
of duplicate requests or repairs. For an interactive applica-
tion such as wb, close attention must be paid to minimizing
delay. For reliably distributing Usenet news, on the other
hand, minimizing bandwidth would be more important than
minimizing delay. Again some minor tuning to our request
and repair timer algorithms may make our work readily ap-
plicable to the news distribution.

As a third example, we could consider applying the basic
approach in this work to data caching and replication for Web
pages. Like wb, all objects in the Web have a globally unique
identifier. With HTTP, all requests for a specific object are
handled by the original source, even though in many cases,
especially for “hot” objects, a copy may be found within
the neighborhood of a requester. As distributed Web caches
are implemented, our reliable multicast framework could be
used to reliably distribute updates to the caches. As another
possibility, when a user makes a request to a remote object,
the request could be multicast to a cache group. By using
our timer algorithms, the cache in the cache group closest to
the requester would be most likely to send a reply.

We believe that the approach to reliable multicast de-
scribed in this paper could be useful to a wide range of ap-
plications based on multicast groups. Even for applications
that may require partial or total data ordering, the reliable
multicast framework described in this paper could be used to
reliably deliver the data to all group members, and a partial
or total ordering protocol could be built on top that is specif-
ically tailored to the ordering needs of that application. As
[CS93] has shown, for applications with ordering require-
ments, preserving the ordering of messages as they appear
in the network is often an expensive and inadequate substi-
tute for preserving the “semantic ordering” of the messages
appropriate for the application.

9 Related work on reliable multicast

The literature is rich with architectures for reliable multicast
[MTC]. Due to space limitations, we will not describe the
details of each solution. Instead, we focus on the different
goals and definitions of reliability in the various architec-
tures, and the implications of these differences for the scal-
ability, robustness, handling of dynamic group membership,
and overhead of the algorithms.

The Chang and Maxemchuk protocol [CM84] is one of the
pioneer works in reliable multicast protocols. It is basically
a centralized scheme that provides totally ordered delivery
of data to all group members. All the members are ordered
in a logical ring, with one of them being the master, called
the token site. The token site is moved around the ring af-
ter each data transmission. Sources multicast new data to

the group, and the token site is responsible for acknowledg-
ing (by multicast) the new data with a timestamp, as well as
retransmitting (through unicast) all missing packets upon re-
quests from individual receivers. The order of data reception
at all the sites is determined by the timestamp in the ACK.
Each ACK also serves to pass the token to the next member
in the ring. By shifting the token site among all the members,
with a requirement that a site can become the token site only
if it has received all the acknowledged data, it is assured that
after shifting the token site through all theN members in the
group, everyone will have received all the data that is at least
N smaller than the current timestamp value.

Because the token site is responsible for all the acknowl-
edgments and retransmissions, it becomes the bottleneck
point whenever losses occur. The scheme also requires ref-
ormation of the ring whenever a membership change occurs.
Therefore it does not scale well with the size of the group.

RMP (Reliable Multicast Protocol) [WKM95], based on
the Chang and Maxemchuk algorithm, provides an atomic,
totally ordered, reliable multicast service that runs on top
of IP Multicasting. RMP provides added QoS parameters
in each data transfer and better handling of membership
changes. The most recent version of RMP uses a modified
SRM Request/Repair policy along with a sliding window
flow control scheme based on TCP [MWC95].

The reliable multicast protocol for ordered delivery de-
scribed in [KTHB89] is similar to, but simpler than, the
Chang and Maxemchuk protocol. Basically, all data is first
unicast to a master site, called a sequencer, which then multi-
casts the data to the group. Therefore the sequencer provides
a global ordering of all the data in time; it is also responsi-
ble for retransmitting, by unicast, all the missing data upon
requests. The sequencer site does not move unless it fails, in
which case a new sequencer is elected. To avoid keeping all
the data forever, the sequencer keeps track of the receiving
state of all the members to determine the highest sequence
number that has been correctly received by all the members.

MTP (Multicasting Transport Protocol) [AFM92] is again
a centralized scheme for totally ordered multicast delivery.
A master site is responsible for granting membership and to-
kens for data transmission; each host must obtain a token
from the master first before multicasting data to the group,
thus the total order of data packets is maintained. A window
size defines the number of packets that can be multicast into
the group in a single heartbeat and a retention size defines the
period (in heartbeats) to maintain all client data for retrans-
mission. NACKs are unicast to the data source which then
multicasts the retransmission to whole group.

Compared to the above cited works, the Trans and Total
protocols described in [MMA90] are closer in spirit to our
work. These protocols assume that all the members in a mul-
ticast group are attached to one broadcast LAN. Each host
keeps an acknowledgment list which contains identifiers of
both positive and negative ACKs. Whenever a host sends a
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data packet, it attaches its acknowledgment list to the packet,
as a way to synchronize the state with all other members in
the group. Because the single LAN limits data transmissions
from all hosts to one packet at a time, partial and total or-
dering of data delivery can be readily derived from data and
acknowledgment sequences.

Log-based Receiver-reliable Multicast (LBRM) [HSC95]
was designed to support Distributed Interactive Simulation
(DIS). The receiver-based reliability is provided by primary
and secondary logging servers. Receivers request retrans-
missions from the secondary logging servers, which requests
retransmissions from the primary logging server. Both the
source and the secondary logging servers use either deter-
ministic or probabilistic requests to select between unicast
and multicast retransmissions.

LBRM uses a variable heartbeat scheme sends heartbeat
messages (e.g., session messages) more frequently immedi-
ately after a data transmission. In an environment when the
basic transmission rate is low, this variable heartbeat enables
receivers to detect losses sooner, with no penalty in terms of
the total number of heartbeat messages transmitted. While
the variable heartbeat scheme would not be appropriate for an
application such as wb, where the original congestion could
itself result from many senders sending data at the same time,
the variable heartbeat scheme could be quite useful for an
application with a natural limit on the worst-case number of
concurrent senders, and would be easily implementable in
SRM.

Perhaps the most well-known work on reliable multicast is
the ISIS distributed programming system developed at Cor-
nell University [BSS91, ISIS]. ISIS provides causal ordering
and, if desired, total ordering of messageson top ofa reliable
multicast delivery protocol. Therefore the ISIS work is to
some extent orthogonal to the work described in this paper,
and further confirms our notion that a partial or total order-
ing, when desired, can always be added on top of a reliable
multicast delivery system. The reliable multicast delivery in
existing ISIS implementations is achieved by multiple uni-
cast connections using a windowed acknowledgment proto-
col similar to TCP [B93]. Horus, the successor to ISIS, can
optionally run on top of IP multicast.

10 Future work

10.1 Future work on local recovery

Section 7.2 has shown that local recovery based on local-
recovery neighborhoods can be quite effective in limiting the
unnecessary use of bandwidth in loss recovery events. While
[FJLMZ95] discusses some of the issues in implementing
TTL-based local recovery, there are many open questions
about which mechanisms should be used to define local-
recoveryneighborhoods, how individual members should de-
termine whether to send requests with local or global scope,

etc.
In many topologies, the effectiveness of local recovery

could be improved by adding members to the multicast group
in strategic locations. For example, consider the known sta-
ble topologies discussed in [HSC95], where losses are ex-
pected to occur mainly on the tail circuits, rather than in the
backbone or in the LANs, and the design priority is to keep
unnecessary traffic off of the tail circuits. The addition of a
session member (i.e., cache) on a node near the local end of
the tail circuit, coupled with a local-recovery neighborhood
defined to include all members on that end of the tail cir-
cuit, would allow local recovery to continue for losses on the
local area without adding any unnecessary traffic to the tail
circuit itself. And for losses on the tail circuit itself, defining
a larger local recovery area that included the local end of the
tail circuit and some member (or cache) on the backbone end
of the tail circuit would enable local recovery for losses on
the tail circuit to continue without adding unnecessary traffic
to the other tail circuits.

10.2 Future work on congestion control

SRM’s basic framework for congestion control assumes that
the members of the multicast session have an estimate of
the available bandwidthfor the session, and constrain the
data transmitted to be within this estimated bandwidth. This
framework raises several somewhat separate issues, such as
how members determine this available bandwidth; how to
detect congestion or avoid potential congestion; and given
available bandwidth, which piece of data a member should
send first.

Multicast congestion control is a relatively new area for re-
search. For unicast traffic, there is a single path from source
to receiver, with an automatic feedback loop provided by re-
turning acknowledgment packets. In contrast, in a multicast
group there could be several sources, and the various com-
munication paths from an active source to the members of
the multicast group can have a range of bandwidth, propaga-
tion delay, and competing congestion. In this case, how does
one define and detect congestion? Do the sources respond
to congestion by slowing down their transmission rate, do
the receivers respond to congestion by unsubscribing from
(possibly layered) multicast groups, or should there be some
combination of these two approaches? With multicast traffic,
there are application-specific policy decisions about whether
or not to tune the congestion control procedures to the needs
of the worst-case receiver; these questions do not arise with
unicast transmissions. In this section we assume a scalable
application such as wb that is not necessarily tuned to the
needs of the worst-case receiver.

It is possible for congestion to be detected collectively by
the members in a session, for example through observations
of packet losses or of the data reception rate. As in RTP,
session messages can be used to exchange information about
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observed performance.
If the bandwidth along different paths in the multicast

group differs substantially, then members behind small pipes
that detect severe congestion can unsubscribe from the group,
or perhaps from one of several multicast groups associated
with that session. An approach under investigation for the
video tool vic [MV95] is to divide the total data transmission
into several substreams, with each being sent to a separate
multicast group. Members that detect congestion would un-
subscribe from higher-bandwidth groups. If this framework
is used for reliable multicast, then reliable delivery should be
provided separately within each group.

While considerable research has been done on layering
techniques for video, layering techniques are application-
specific, and layering for wb data remains an area for fur-
ther research. As a simple example of layering for wb data,
a low-bandwidth multicast group could be limited to text-
based data, and a higher-bandwidth multicast group could be
used for graphics or for side-discussions. Other possibili-
ties would be to encode embedded images using progressive
JPEG or some other layered scheme, or to tradeoff free-hand
drawing resolution for rate (i.e., you could send 50 points/sec
on a high rate channel and 1 point/sec on a low-rate channel).

As another approach to assure a certain amount of band-
width for a session, receivers could reserve resources where
such network services were available; an example of such
services are the predictive and controlled delay services cur-
rently being developed for the Internet [BCS94]. We believe
that it should be the choice of individual members whether
to reserve resources or to rely on best effort service for a
session; the use of services other than best-effort should not
be a mandated requirement for all members of a multicast
group. Thus, resource reservation could complement other
congestion control mechanisms of the multicast session. The
current implementation of wb essentially uses a static as-
sumption of the available bandwidth, backed up by the in-
formal, consensus-based “admissions-control procedure” of
the current Mbone.

Independent from how we estimate or obtain the available
bandwidth, individual members must constrain the aggregate
data transmission by the session to be under this available
bandwidth. Under this constraint, however, one can apply
application-specific policies to determine the transmission
order of packets. In wb, for example, priority in data trans-
mission goes to loss recovery for the current “page”, then to
new data, and last to loss recovery for previous pages.

11 Conclusions

This paper described in detail SRM, a scalable reliable mul-
ticast algorithm that was first developed to support wb. We
have discussed the basic design principles as well as exten-
sions of the basic algorithm that make it more robust for a

wide range of network topologies.
Many applications need or desire support for reliable mul-

ticast. Experience with the wb design shows, however, that
individual applications may have widely different require-
ments of multicast reliability. Instead of designing a generic
reliable multicast protocol to meet the most stringent require-
ments, this work has resulted in a simple, robust, and scalable
reliable multicast algorithm that meets a minimal reliability
definition of delivering all data to all group members, leav-
ing more advanced functionalities, whenever needed, to be
handled by individual applications.

The work described in this paper is based on the fundamen-
tal principles of application level framing (ALF), multicast
grouping, and the adaptivity and robustness in the TCP/IP ar-
chitecture design. Although our current protocol implemen-
tation is specifically tailored to wb, the protocol framework
is generally applicable to a wide variety of other applications.
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